Twisted Vertex Representations via Spin Groups and the Mckay Correspondence
نویسندگان
چکیده
We establish a twisted analog of our recent work on vertex representations and the McKay correspondence. For each finite group Γ and a virtual character of Γ we construct twisted vertex operators on the Fock space spanned by the super spin characters of the spin wreath products Γ ≀ S̃n of Γ and a double cover of the symmetric group Sn for all n. When Γ is a subgroup of SL2(C) with the McKay virtual character, our construction gives a group theoretic realization of the basic representations of the twisted affine and twisted toroidal algebras. When Γ is an arbitrary finite group and the virtual character is trivial, our vertex operator construction yields the spin character tables for Γ ≀ S̃n.
منابع مشابه
Twisted Vertex Representations and Spin Characters
We establish a new group-theoretic realization of the basic representations of the twisted affine and twisted toroidal algebras of ADE types in the same spirit of our new approach to the McKay correspondence. Our vertex operator construction provides a unified description to the character tables for the spin cover of the wreath product of the twisted hyperoctahedral groups and an arbitrary fini...
متن کاملQuantum Vertex Representations via Finite Groups and the Mckay Correspondence
We establish a q-analog of our recent work on vertex representations and the McKay correspondence. For each finite group Γ we construct a Fock space and associated vertex operators in terms of wreath products of Γ×C and the symmetric groups. An important special case is obtained when Γ is a finite subgroup of SU2, where our construction yields a group theoretic realization of the representation...
متن کاملTwo-parameter quantum vertex representations via finite groups and the McKay correspondence
We introduce two-parameter quantum toroidal algebras of simply laced types and provide their group theoretic realization using finite subgroups of SL2(C) via McKay correspondence. In particular our construction contains a realization of the vertex representation of the two-parameter quantum affine algebras of ADE types.
متن کاملVertex Representations via Finite Groups and the Mckay Correspondence
where the first factor is a symmetric algebra and the second one is a group algebra. The affine algebra ĝ contains a Heisenberg algebra ĥ. One can define the so-called vertex operators X(α, z) associated to α ∈ Q acting on V essentially using the Heisenberg algebra ĥ. The representation of ĝ on V is then obtained from the action of the Heisenberg algebra ĥ and the vertex operators X(α, z) assoc...
متن کاملTwisted vertex representations of quantum affine algebras
Recent interests in quantum groups are stimulated by their marvelous relations with quantum Yang-Baxter equations, conformal field theory, invariants of links and knots, and q-hypergeometric series. Besides understanding the reason of the appearance of quantum groups in both mathematics and theoretical physics there is a natural problem of finding q-deformations or quantum analogues of known st...
متن کامل